
    h	#                    |   d dl mZ d Z e        [d dlZd dlZdZdZg ZeD ]  Z	  e	e        er e
ddj                  e      z         [[[	 d d	lmZ d dlmZmZmZmZmZmZ d dlZd dlmZmZm Z m!Z!m"Z"m#Z#m$Z$m%Z%m&Z&m'Z'm(Z(m)Z)m*Z*m+Z+m,Z,m-Z-m.Z.m/Z/m0Z0m1Z1m2Z2m3Z3m4Z4m5Z5m6Z6m7Z7m8Z8m9Z9m:Z:m;Z;m<Z<m=Z=m>Z>m?Z?m@Z@mAZAmBZBmCZCmDZDmEZEmFZFmGZGmHZHmIZImJZJmKZKmLZLmMZMmNZNmOZOmPZPmQZQmRZRmSZSmTZTmUZU d dlVmWZW d dlXmYZY d dlZm[Z[ d dl\m]Z] d dl^m_Z_m`Z`maZambZbmcZcmdZdmeZemfZfmgZgmhZhmiZimjZjmkZkmlZl d dlmmZmmnZnmoZompZpmqZqmrZr d dlmsZs d dltmuZu d dlvmwZwmxZxmyZymzZzm{Z{m|Z|m}Z}m~Z~mZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZ d dlmZ d dlmZ dZ	 d dlmZmZ dZd ej6                  v r ej8                  d!ed"#       [[d$Zg d%Zy# e
$ r!Zej                  e de        Y dZ[dZ[ww xY w# e
$ rZej$                  Z e
d
e d      edZ[ww xY w# e
$ r: d dlmZ  e       Zej5                  ded         Zej5                  d      Z[[Y w xY w)&    )annotationsc            	     "   dd l } | j                  j                  | j                  j                  | j                  j	                  | j                  j                  t              | j                  d            x}      r | j                  |       y y )Nr   zpandas.libs)	ospathisdirabspathjoindirname__file__pardiradd_dll_directory)r   libs_dirs     4D:\jyotish\venv\Lib\site-packages\pandas/__init__.py_delvewheel_patch_1_11_1r      sc    	ww}}bggooh>WY[YbYbdq1r!ssXtX& u    Nrestructuredtext)numpypytzdateutilz: z(Unable to import required dependencies:

)is_numpy_devzC extension: z not built. If you want to import pandas from the source directory, you may need to run 'python setup.py build_ext' to build the C extensions first.)
get_option
set_optionreset_optiondescribe_optionoption_contextoptions)8
ArrowDtype	Int8Dtype
Int16Dtype
Int32Dtype
Int64Dtype
UInt8DtypeUInt16DtypeUInt32DtypeUInt64DtypeFloat32DtypeFloat64DtypeCategoricalDtypePeriodDtypeIntervalDtypeDatetimeTZDtypeStringDtypeBooleanDtypeNAisnaisnullnotnanotnullIndexCategoricalIndex
RangeIndex
MultiIndexIntervalIndexTimedeltaIndexDatetimeIndexPeriodIndex
IndexSliceNaTPeriodperiod_range	Timedeltatimedelta_range	Timestamp
date_rangebdate_rangeIntervalinterval_range
DateOffset
to_numericto_datetimeto_timedeltaFlagsGrouper	factorizeuniquevalue_countsNamedAggarrayCategoricalset_eng_float_formatSeries	DataFrame)SparseDtype)
infer_freq)offsets)eval)concatlreshapemeltwide_to_longmerge
merge_asofmerge_orderedcrosstabpivotpivot_tableget_dummiesfrom_dummiescutqcut)apiarrayserrorsioplottingtseries)testing)show_versions)	ExcelFileExcelWriter
read_excelread_csvread_fwf
read_tableread_pickle	to_pickleHDFStoreread_hdfread_sqlread_sql_queryread_sql_tableread_clipboardread_parquetread_orcread_featherread_gbq	read_htmlread_xml	read_json
read_stataread_sas	read_spss)json_normalize)testF)__version____git_version__T)get_versionszclosest-tagversionzfull-revisionidPANDAS_DATA_MANAGERzThe env variable PANDAS_DATA_MANAGER is set. The data_manager option is deprecated and will be removed in a future version. Only the BlockManager will be available. Unset this environment variable to silence this warning.   )
stacklevela  
pandas - a powerful data analysis and manipulation library for Python
=====================================================================

**pandas** is a Python package providing fast, flexible, and expressive data
structures designed to make working with "relational" or "labeled" data both
easy and intuitive. It aims to be the fundamental high-level building block for
doing practical, **real world** data analysis in Python. Additionally, it has
the broader goal of becoming **the most powerful and flexible open source data
analysis / manipulation tool available in any language**. It is already well on
its way toward this goal.

Main Features
-------------
Here are just a few of the things that pandas does well:

  - Easy handling of missing data in floating point as well as non-floating
    point data.
  - Size mutability: columns can be inserted and deleted from DataFrame and
    higher dimensional objects
  - Automatic and explicit data alignment: objects can be explicitly aligned
    to a set of labels, or the user can simply ignore the labels and let
    `Series`, `DataFrame`, etc. automatically align the data for you in
    computations.
  - Powerful, flexible group by functionality to perform split-apply-combine
    operations on data sets, for both aggregating and transforming data.
  - Make it easy to convert ragged, differently-indexed data in other Python
    and NumPy data structures into DataFrame objects.
  - Intelligent label-based slicing, fancy indexing, and subsetting of large
    data sets.
  - Intuitive merging and joining data sets.
  - Flexible reshaping and pivoting of data sets.
  - Hierarchical labeling of axes (possible to have multiple labels per tick).
  - Robust IO tools for loading data from flat files (CSV and delimited),
    Excel files, databases, and saving/loading data from the ultrafast HDF5
    format.
  - Time series-specific functionality: date range generation and frequency
    conversion, moving window statistics, date shifting and lagging.
)rr   r.   rR   r)   r5   rU   rG   r:   r,   rp   rq   rK   r'   r(   rL   rx   r4   r<   r    r!   r"   r   rE   r+   r8   r7   r/   r=   rP   r>   r*   r;   r6   rT   rV   r-   r@   r9   rB   r$   r%   r&   r#   rh   rQ   ri   rD   rZ   ra   rf   rC   r   rj   rY   rM   rd   re   r   rW   rF   rk   r0   r1   r   r[   r\   r^   r_   r`   r2   r3   rX   r   r   r?   rb   rc   rl   rg   r}   rs   rr   r   rt   r   ry   r   r   r   r~   rv   r   r   rz   r{   r|   r   ru   r   r   rS   r   ro   r   rn   rA   rI   rH   rw   rJ   rm   rN   rO   r]   )
__future__r   r   r   warnings__docformat___hard_dependencies_missing_dependencies_dependency
__import__ImportError_eappendr	   pandas.compatr   _is_numpy_dev_errname_modulepandas._configr   r   r   r   r   r   pandas.core.config_initpandaspandas.core.apir   r   r    r!   r"   r#   r$   r%   r&   r'   r(   r)   r*   r+   r,   r-   r.   r/   r0   r1   r2   r3   r4   r5   r6   r7   r8   r9   r:   r;   r<   r=   r>   r?   r@   rA   rB   rC   rD   rE   rF   rG   rH   rI   rJ   rK   rL   rM   rN   rO   rP   rQ   rR   rS   rT   rU   pandas.core.dtypes.dtypesrV   pandas.tseries.apirW   pandas.tseriesrX   pandas.core.computation.apirY   pandas.core.reshape.apirZ   r[   r\   r]   r^   r_   r`   ra   rb   rc   rd   re   rf   rg   rh   ri   rj   rk   rl   rm   rn   pandas.util._print_versionsro   pandas.io.apirp   rq   rr   rs   rt   ru   rv   rw   rx   ry   rz   r{   r|   r}   r~   r   r   r   r   r   r   r   r   r   pandas.io.json._normalizer   pandas.util._testerr   _built_with_mesonpandas._version_mesonr   r   pandas._versionr   vgetenvironwarnFutureWarning__doc____all__ r   r   <module>r      sE   "'   
 " 3  %K=; & 
3dii@U6VV  %:  ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?B 2 ) " ,   " > =  5      B 5 $  
  BJJ&HMM	V 	 b&Vs[  =$$}Brd%;<<=  iiG

y !G 	G 	~  ,A%%q|4Kee-.OasA   F-G 5
G< -G2GGG9G44G9<<H;:H;